Carbon capture technologies should move faster now !

This entry was posted by Saturday, 19 March, 2011
Read the rest of this entry »

The nuke disaster in Japan is going to change the energy mix of the world soon.

The emphasize on renewables like solar, wind, geo thermal, tidal, wave, hydro etc will now become more.

For the earth quake and the tsunami that hit Japan climate change is probably not the reason. Nor the green house gasses. Probably not even the enhanced ppm of co2 in the atmosphere.

The need for speeding up the carbon capture from coal powered plants is now even more than ever before, now that nuke is going to take the back seat. Atleast for a while.
The CCS technology has to be perfected and implemented as soon as one can.

Carbon capture and sequestration technology for retro fitting of existing power plants also need to be hastened.

Nuclear  power provides about 6% of the world’s energy and 13–14% of the world’s electricity.

The Office of Fossil Energy’s National Energy Technology Laboratory (NETL) of USA has begun research under the Carbon Capture Simulation Initiative (CCSI), partnering with other national laboratories, universities, and industry to develop state-of-the-art computational modeling and simulation tools to accelerate commercialization of carbon capture and storage (CCS) technologies.

CCSI is one of three areas of research under the Carbon Capture and Storage Simulation Initiative announced late last year by Energy Secretary Steven Chu. The others involve developing validation data and experimental work, and developing methodology and simulation tools to assess risk.

Both the above are good news for the CCS industry. The need for them to move fast  is very high.

Certainly extensions of old nuclear plants will get delayed or more likely, get terminated. All the new plants will also get delayed and many will get cancelled.
Newer and stricter regulations and laws will ensure that many nuclear projects may get put off or not permitted.
Many under developed and less developed countries may go for coal based power plants.
This is not going to help CO2 emission reduction.

CCS will have to come to the rescue immediately. CCS is not going to generate new electricity.

It can help new coal plants fitted with CCS get operational as coal still remains cheap.

To do carbon capture and storage on a temporary basis is expensive .  At present NETL, CCSI and several private players as well as government bodies are planning to capture carbon and store it as geological sequestration or as ocean sequestration. Technology is being perfected for carbon capture, liquefaction, transportation and storage.


Many stringent stipulations that will come into being for nuclear power plants will also apply for coal powered plants.

Therefore CCS will gain importance and hence the need to reduce the time to market of CCS technologies.

Objections  to Carbon capture and sequestration may be a little less than for a new nuclear plant.

If the concept is to store Co2,  temporarily till such time such time new processes for products from co2 are conceived, then it will be a great idea.

However, there is a great need to capture co2 and store it quickly.

CCSI will utilize a software infrastructure to accelerate the development and deployment cycle for bringing new, cost-effective CCS technologies to market in several important ways. The operative term is quick.

Promising concepts will be more quickly identified through rapid computational screening of devices and processes.

The time and expense to design and troubleshoot new devices and processes will be reduced through science-based optimal designs.

The technical risk in taking technology from laboratory-scale to commercial-scale will be more accurately quantified.

Deployment costs will be quantified more quickly by replacing some of the physical operational tests with virtual power plant simulations.

CCS is critical to curb climate change. Capture co2 from power plants and industrial facilities, and store it to prevent the greenhouse gas from entering the atmosphere.DOE has started a number of programs to promote CCS, including the Carbon Capture and Storage Simulation Initiative.

CCSI will develop a set of tools that can simulate scale-up of a broad suite of new carbon capture technologies, from laboratory to commercial scale.  In its first 5 years CCSI will focus on oxy-combustion and post-combustion capture.

CCSI will be using solid sorbents and advanced solvents. Pulverized coal power plants, which currently generate nearly half of USA’s electricity and are expected to emit 95percent of the United State’s coal-based CO2 emissionsbetween 2010 and 2030.

The CCSI is led by NETL.  CCSI thus leverages the core strengths of DOE’s national laboratories in modeling and simulation. The project brings together talent from several well known research centres like NETL, Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory.

The CCSI’s initial industrial partners are ADA Environmental Solutions, Alstom Power, Ameren, Babcock Power, Babcock & Wilcox, Chevron, EPRI, Eastman, Fluor, General Electric, Ramgen Power Systems, and Southern Company.

There is this globalccsinstitute in Australia. The Institute connects parties around the world to address issues and learn from each other to accelerate the deployment of CCS projects. The global ccs institute too should get more funding and should fund/ lend more projects to start CCS.

Now, all these Government organisations of CCS,  may have to hasten their plans to reach out.
Similarly RECS the organization that fosters and advances education, scientific research, professional training and career networks for graduate students and young professionals in the CCS field.

They may need to look at training more people quickly.

The CCSI’s academic participants—Carnegie Mellon University, the University of Pittsburgh, Virginia Tech, Penn State University, Princeton University, and West Virginia University—bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. CCSI’s academic  section is pretty wide and very impressive. But it needs to move truly fast .

No sequestered carbon dioxide has any guarantee against earth quakes and tsunamis. However if the storage is made in zones that are less prone to earthquakes, it will be a lot safer.

With such solid backing of well known participants with proven capabilities, it is hoped that the carbon capture and storage technologies are moved forward faster than ever before as the need is now more than ever before.

CSLF set up in South Africa. The Carbon Sequestration Leadership Forum (CSLF) is a Ministerial-level internationalclimate change initiative that is focused on the development of improved cost-effective technologies for theseparation and capture of carbon dioxide (CO2) for its transport and long-term safe storage. Organisations like CSLF in all countries should change their road map for ccs and speeden up. Time is of essence.
These organisations also need to invest on research in CO2 to products immediately.

CCS plus ‘ co2 to products ‘ is the  way to go !


Related Terms in the Glossary:

Carbon Capture and Storage

Greenhouse Gas

Climate Change

Carbon Sequestration


2 Responses to “Carbon capture technologies should move faster now !”

  1. Miafranceska

    Nuclear is going to go slow. Solar, wind, hydro etc cant speed up more to fill the void from nuclear. poor countries may go for coal power.

    Without action to curb emissions, there is
    a very high risk of global warming reaching
    well beyond 2°C relative to pre-industrial
    times. such unmitigated global warming
    would increase the risk of accelerated or
    irreversible changes in the climate system,
    such as initiating melting of the greenland
    and West Antarctic ice sheets, leading to
    major sea level rise, or the release of large
    natural stores of methane from oceans or
    melting permafrost, which could cause
    further warming.
    So, CCS technologies for carbon capture and storage should move faster. I agree.
    Co2 to products will take time.

  2. Aathmika

    The effects that earthquake-generated ground shift would have on the nuclear generating plant installation – especially the core and rod cooling systems and backup emergency generators and pumps is now well known.
    Nuclear power plants on seismic zones are out. I agree with you. we need, CCS in a hurry.

Leave a Reply