Archive for category CO2 Transportation

Carbon capture and storage to commence in India with NTPC

Posted by on Saturday, 19 March, 2011

National Thermal power corporation is an Indian company with expertise in power utilities, is better known as NTPC Ltd  in India.

 

Toshiba is the largest supplier of nuclear reactors in Japan. Given what has happened in Japan regarding the nuke melt down due to the earthquake and tsunami, Toshiba has to go slow on its nuclear division.

Whether the world is going to stop nuclear plants or not, there is going to be a slow down in new nuclear plants and in renewing old plants.

 

NTPC  is in talks with Toshiba Corp to build a pilot project in India to capture and store carbon emissions.

The Japanese power-equipment maker, Toshiba plans to develop its first 5-Mw carbon capture plant in India by 2016. This was confirmed by  Toshiba India Private Ltd Managing Director, Kenji Urai.

The project may be similar to the one set to start this year at a 47-Mw plant at Mikawa, Japan.

India plans to add about 64,000 Mw, or the equivalent of more than 50 new nuclear plants, in coal-fired electric plants in the five years through 2017. The country is seeking ways to reduce carbondioxide emissions, after agreeing to reduce the greenhouse gas in proportion to gross domestic product by 25 percent, compared to levels in 2005, by 2020.

 

It makes sense for India to build coal power plants with CCS technology.

Already the Government is facing stiff resistance for a coal fired power plant in Srikakulam, near Andhra.

India is a power starved country. India is probably the 5th largest co2 emitter. However, on a percapita basis, they are far below most other industrialised nations.

Carbon capture-and-storage technology typically traps emissions and pumps these underground, for what its promoters say is safe, permanent storage. So far, it has mostly been used in pilot projects and for storing only a portion of total plant emissions.

 

Critics say the cost is too high for its benefits. It’s certainly not economically feasible because  when with the  CCS equipment pre- fitted to a coal-based plant, it would double the investment.

Toshiba, Japan’s largest supplier of nuclear reactors, entered the Indian power market through a joint venture with Indian power utility JSW Energy Ltd.

 

Toshiba plans to sell $400 million of power-generation equipment in India by 2015. Through two joint ventures, Toshiba and JSW will open a plant in Chennai in July, to produce 3,000 Mw of boilers and turbines a year.

The joint venture is expecting orders from NTPC for four 660-Mw turbines this year and has already received orders for two 660-Mw turbines and generators from the Essar Group for its coal-fired Salaya plant in Gujarat.

The International Energy Agency supports carbon capture as a measure to limit greenhouse gases.

What happens when an earthquake hits the carbon geo sequestered, no one knows.

If  the leakage is slow, perhaps there will be time to do some damage control.

If all the co2 rushes out abruptly, it can cause mind boggling damage to mankind and climate.

The world needs about 3,400 projects,  by 2050 to reduce emissions.

 

Related Terms in the Glossary:

Carbon Capture and Storage

Greenhouse gas

 


CO2 Transport R&D Project Launched by EU COCATE

Posted by on Monday, 1 March, 2010

The project brings together eight other research and industrial partners: the Le Havre Region Development Agency (France), Geogreen (France), Accoat (Denmark), SINTEF Energy Research (Norway), DNV (Norway), TNO (Netherlands), Port of Rotterdam NV (Netherlands) and SANERI (South Africa).

COCATE’s objective is to analyze the conditions for transporting the flue gases emitted from several CO2-emitting industrial facilities with a view to pooling the capture process, and for exporting large quantities of captured CO2 to storage areas. While major industrial facilities can be fitted with their own CO2 capture and transport installations, this does not apply to units that emit less CO2 – from a few tens of thousands to several hundred thousand metric tons – and for which the investment required would be uneconomic. They must pool the CO2 capture and transportation system in order to cut costs and to make CCS an affordable technology.

So far, all the R&D projects in the CO2 transportation field have been exclusively focused on the CO2 emitted by the major emitting industries, in particular power stations. As the first project dedicated to the issue of pooled CO2 treatment, COCATE should allow medium-sized production sites located in the same geographic area to cut their CO2 emissions in the same way as major industrial facilities.

Interesting. I have not heard of pooling the flue gases for CO2 treatment so far. Am not sure if the economics works out better this way. Which will cost less? Individual capture infrastructure at multiple locations but transporting only CO2 or a single capture mechanism that involves transporting the entire flue gas. Well, thinking about it again, it appears that there is a chance that the latter could indeed cost less. Let’s hope for good results from this experiment.

Source