CO2 to Gasoline, Fuel Using Enzymes – Carbon Sciences’ Biocatalysts

This entry was posted by Thursday, 28 January, 2010
Read the rest of this entry »

Read recently about the announcement from Carbon Sciences that it has developed a breakthrough technology to recycle carbon dioxide (CO2) emissions into gasoline and other portable fuels.

The company’s current approach is an enzyme-based process used to transform CO2 into low-level fuels, such as methanol. According to the company, it’s team has now discovered a new and more cost efficient process to produce gasoline, a high-level fuel, from CO2. The key features of this breakthrough includes (1) the of use flue emissions directly from coal-fired power plants or industrial factories, (2) the use of brackish water, eliminating the need for distilled freshwater as the source of hydrogen and reaction medium, (3) mild operating conditions, eliminating the need for capital intensive stainless steel equipment, and (4) a highly scalable system.

I was able to get some more insights on the technology and process, but not surprisingly, a lot more – from the company’s web page. See also here.

The path that the company is pursuing – a biocatalytic process to obtain useful hydrocarbons from CO2 – is exciting, but there are few details on the specifics, as well as data on energy required for the entire process.

Well, to its credit, the company does say the following:”By innovating at the intersection of chemical engineering and bio-engineering, we have discovered a low energy and highly scalable process to recycle large quantities of CO2 into gaseous and liquid fuels using organic biocatalysts. The key to our CO2-to-Fuel approach lies in a proprietary multi-step biocatalytic process. Instead of using expensive inorganic catalysts, such as zinc, gold or zeolite, with traditional high energy catalytic chemical processes, our process uses inexpensive, renewable biomolecules to catalyze certain chemical reactions required to transform CO2 and water (H2O) into fuel molecules. Of greatest significance, our process occurs at low temperature and low pressure, thereby requiring far less energy than other approaches.” (Source)

But still, I think their research is at an initial stage and unless we see results from larger-scale commercial efforts with benchmarked data, it will be difficult to know whether indeed this interesting idea can be a serious solution to CO2 capture (I doubt whether it can be called sequestration because the CO2 will be released when the gasoline burns).


Leave a Reply



CLIMAX 500 Climate Tech Startup Snapshot - Top 10 startups in 50 decarbonization avenues

Renewable Energy - Utility Scale Solar | Distributed Solar | Solar Thermal | Wind Power | Biomass heating and power | Biofuels | Hydro Power | Geothermal Energy

Energy Efficiency - Energy Efficient Buildings | Industrial Waste Heat Recovery | Low Carbon Thermal Power | Energy Efficient Industrial Equipment | Smart Grids | Heat Pumps | Digital for Decarbonization

Energy Storage - Battery Storage | Thermal & Mechanical Storage | Green Hydrogen

Agriculture & Food - Sustainable Forestry | Regenerative Agriculture | Smart Farming | Low Carbon Food | Agro Waste Management

Materials - Bio-based Materials | Advanced Materials | Product Use Efficiency | Industrial Resource Efficiency

Waste Management - Reducing Food Waste | Solid Waste Management

Water - Water Use Efficiency 

Decarbonizing Industries - Low Carbon Metals | Low Carbon Chemicals & Fertilizers | Low Carbon Construction Materials | Low Carbon Textiles & Fashion | Decarbonizing Oil & Gas Sector | Corporate Carbon Management

Low Carbon Mobility - Electric Mobility | Low Carbon Trucking | Low Carbon Marine Transport | Low Carbon Aviation | Low Carbon ICE Vehicles | Mass Transit 

GHG Management - CO2 Capture & Storage | C2V - CO2 to Value | Reducing Emissions from Livestock | Reducing Non-CO2 Industrial & Agricultural Emissions | Managing Large Carbon Sinks

Others - Low Carbon Lifestyles | Multi-stakeholder Collaboration | Moonshots